Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 30(3): 483-496, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32146650

RESUMO

The binding of 8-anilino-1-naphthalene sulfonate (ANS) to the nucleotide binding domain (N-domain) of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) was studied. Molecular docking predicted two ANS binding modes (BMI and BMII) in the nucleotide binding site. The molecular interaction was confirmed as the fluorescence intensity of ANS was dramatically increased when in the presence of an engineered recombinant N-domain. Molecular dynamics simulation showed BMI (which occupies the ATP binding site) as the mode that is stable in solution. The above was confirmed by the absence of ANS fluorescence in the presence of a fluorescein isothiocyanate (FITC)-labeled N-domain. Further, the labeling of the N-domain with FITC was hindered by the presence of ANS, i.e., ANS was bound to the ATP binding site. Importantly, ANS displayed a higher affinity than ATP. In addition, ANS binding led to quenching the N-domain intrinsic fluorescence displaying a FRET pattern, which suggested the existence of a Trp-ANS FRET couple. Nonetheless, the chemical modification of the sole Trp residue with N-bromosuccinimide (NBS) discarded the existence of FRET and instead indicated structural rearrangements in the nucleotide binding site during ANS binding. Finally, Ca2+-ATPase kinetics in the presence of ANS showed a partial mixed-type inhibition. The Dixon plot showed the ANS-Ca2+-ATPase complex as catalytically active, hence supporting the existence of a functional dimeric Ca2+-ATPase in sarcoplasmic reticulum vesicles. ANS may be used as a molecular platform for the development of more effective inhibitors of Ca2+-ATPase and appears to be a new fluorescent probe for the nucleotide binding site. Graphical Abstract Molecular docking of ANS to the nucleotide binding site of Ca2+-ATPase. ANS fluorescence increase reveals molecular interaction.


Assuntos
Naftalenossulfonato de Anilina/química , Cálcio/química , Nucleotídeos/química , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Naftalenossulfonato de Anilina/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Isotiocianatos/química , Isotiocianatos/metabolismo , Simulação de Acoplamento Molecular , Nucleotídeos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Retículo Sarcoplasmático/química , Retículo Sarcoplasmático/metabolismo
2.
Molecules ; 24(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857224

RESUMO

The plasma membrane H⁺-ATPase was purified from the yeast K. lactis. The oligomeric state of the H⁺-ATPase is not known. Size exclusion chromatography displayed two macromolecular assembly states (MASs) of different sizes for the solubilized enzyme. Blue native electrophoresis (BN-PAGE) showed the H⁺-ATPase hexamer in both MASs as the sole/main oligomeric state-in the aggregated and free state. The hexameric state was confirmed in dodecyl maltoside-treated plasma membranes by Western-Blot. Tetramers, dimers, and monomers were present in negligible amounts, thus depicting the oligomerization pathway with the dimer as the oligomerization unit. H⁺-ATPase kinetics was cooperative (n~1.9), and importantly, in both MASs significant differences were determined in intrinsic fluorescence intensity, nucleotide affinity and Vmax; hence suggesting the large MAS as the activated state of the H⁺-ATPase. It is concluded that the quaternary structure of the H⁺-ATPase is the hexamer and that a relationship seems to exist between ATPase function and the aggregation state of the hexamer.


Assuntos
Membrana Celular/enzimologia , Kluyveromyces/enzimologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Western Blotting , Cromatografia em Gel , Substâncias Macromoleculares/metabolismo
3.
Molecules ; 22(7)2017 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-28640221

RESUMO

Modern agriculture requires alternative practices that improve crop growth without negatively affecting the environment, as resources such as water and arable land grow scarcer while the human population continues to increase. Grafting is a cultivation technique that allows the plant to be more efficient in its utilization of water and nutrients, while nanoscale material engineering provides the opportunity to use much smaller quantities of consumables compared to conventional systems but with similar or superior effects. On those grounds, we evaluated the effects of chitosan-polyvinyl alcohol hydrogel with absorbed copper nanoparticles (Cs-PVA-nCu) on leaf morphology and plant growth when applied to grafted watermelon cultivar 'Jubilee' plants. Stomatal density (SD), stomatal index (SI), stoma length (SL), and width (SW) were evaluated. The primary stem and root length, the stem diameter, specific leaf area, and fresh and dry weights were also recorded. Our results demonstrate that grafting induces modifications to leaf micromorphology that favorably affect plant growth, with grafted plants showing better vegetative growth in spite of their lower SD and SI values. Application of Cs-PVA-nCu was found to increase stoma width, primary stem length, and root length by 7%, 8% and 14%, respectively. These techniques modestly improve plant development and growth.


Assuntos
Quitosana/química , Citrullus/crescimento & desenvolvimento , Cobre/química , Hidrogéis/química , Nanopartículas Metálicas/química , Álcool de Polivinil/química
4.
Biochemistry ; 55(49): 6751-6765, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951662

RESUMO

A recombinant Ca2+-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg2+) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg2+ > ATP-Mg2+. Interestingly, it was found that Ca2+ binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 µM. Notably, the presence of Ca2+ (200 µM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca2+-ATPase performs structural dynamics upon Ca2+ and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca2+ binding may be involved in Ca2+-ATPase activation under normal physiological conditions.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Nucleotídeos/metabolismo , ATPases Transportadoras de Cálcio/química , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
5.
Biochim Biophys Acta ; 1817(12): 2128-39, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22985601

RESUMO

Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.


Assuntos
Citoplasma/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxigênio/metabolismo , Mutação Puntual/genética , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Respiração Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Imunoensaio , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Conformação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem
6.
Rev Alerg Mex ; 59(2): 65-71, 2012.
Artigo em Espanhol | MEDLINE | ID: mdl-24007961

RESUMO

BACKGROUND: Gut-associated lymphoid tissue (GALT) is mainly formed by the gut mucosa and associated lymphatic structures that under normal conditions induces hyporesponsiveness, a phenomenon termed oral tolerance. However, the potential brakeup of oral tolerance could otherwise lead to disorders such as food allergy. OBJECTIVE: The aim of the study is to characterise the histopathological and immunohistochemical modifications in intestinal gut mucosa in an animal model of food allergy. METHODS: New Zealand rabbits were subcutaneously sensitized twice with ovalbumin (OVA), on day 30 after first sensitization, animals were oral challenged with the same antigen. Lymphatic cell population and accessory cells from gut mucosa were studied by conventional histology, histochemistry and immunohistochemistry. RESULTS: An important increase in number of eosinophils were observed in sensitized and challenged group as well as CD25+cells increase in sensitized animals without challenge. CONCLUSIONS: Data obtained demonstrated that subcutaneous sensitization and challenge with OVA induced generation of specific IgE antibodies and an anaphylactic inflammatory response. This pattern induced quantitative modifications in studied cells and structural changes in mucosa like oedema at intestinal villi in sensitized and challenged rabbits in this animal model of food allergy.


Assuntos
Hipersensibilidade Alimentar , Imunoglobulina E , Alérgenos/imunologia , Animais , Modelos Animais de Doenças , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Ovalbumina
7.
Biochim Biophys Acta ; 1777(2): 202-10, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18036550

RESUMO

Two genes encoding cytochrome c oxidase subunits, Cox2a and Cox2b, are present in the nuclear genomes of apicomplexan parasites and show sequence similarity to corresponding genes in chlorophycean algae. We explored the presence of COX2A and COX2B subunits in the cytochrome c oxidase of Toxoplasma gondii. Antibodies were raised against a synthetic peptide containing a 14-residue fragment of the COX2A polypeptide and against a hexa-histidine-tagged recombinant COX2B protein. Two distinct immunochemical stainings localized the COX2A and COX2B proteins in the parasite's mitochondria. A mitochondria-enriched fraction exhibited cyanide-sensitive oxygen uptake in the presence of succinate. T. gondii mitochondria were solubilized and subjected to Blue Native Electrophoresis followed by second dimension electrophoresis. Selected protein spots from the 2D gels were subjected to mass spectrometry analysis and polypeptides of mitochondrial complexes III, IV and V were identified. Subunits COX2A and COX2B were detected immunochemically and found to co-migrate with complex IV; therefore, they are subunits of the parasite's cytochrome c oxidase. The apparent molecular mass of the T. gondii mature COX2A subunit differs from that of the chlorophycean alga Polytomella sp. The data suggest that during its biogenesis, the mitochondrial targeting sequence of the apicomplexan COX2A precursor protein may be processed differently than the one from its algal counterpart.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Mitocôndrias/enzimologia , Subunidades Proteicas/química , Toxoplasma/enzimologia , Animais , Dimerização , Evolução Molecular , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...